1	Development and characterization of microsatellite loci for the perennial herb
2	Helleborus foetidus (Ranunculaceae)
3	
4	
5	Miyuki M. Seino*, Clara de Vega, Pilar Bazaga, Mónica Medrano and Carlos M. Herrera
6	
7	Estación Biológica de Doñana, CSIC, Avda. Américo Vespucio s/n, 41092, Sevilla, Spain.
8	
9	
10	* Corresponding author:
11	Miyuki M. Seino
12	Estación Biológica de Doñana, CSIC
13	Avda. Américo Vespucio s/n, 41092, Sevilla, Spain.
14	Fax: + 34 954621125
15	e-mail: <u>miyuki@ebd.csic.es</u>
16	
17	Keywords: Helleborus foetidus, Ranunculaceae, microsatellites, 454 pyrosequencing, plant-
18	pollinator mutualism
19	
20	Running title: Microsatellites for Helleborus foetidus
21	
22	Words in text: 2356

23 Abstract

24 Microsatellite loci were developed for Helleborus foetidus by next-generation 454 25 pyrosequencing of a microsatellite-enriched library. We selected 60 primer pairs, from which 26 13 microsatellite markers exhibited polymorphism and 13 were monomorphic. The number of 27 alleles per locus ranged from two to eight (mean=3.92) and expected heterozygosity ranged 28 from 0.05 to 0.77. One locus showed heterozygote deficiency due to the presence of null 29 alleles, and no pairs of loci demonstrated linkage disequilibrium. The newly developed 30 markers will enable population genetic studies and address specific questions involving 31 mating system and pollen dispersal strategies in this species. 32 33 Main text 34 Helleborus foetidus L. (Ranunculaceae) is a diploid (Dhooghe et al. 2009) perennial 35 herb widely distributed across Western Europe that grows in the understory of deciduous and 36 mixed forests (Werner & Ebel 1994). Flowering takes place over winter and early spring. 37 Flowers are hermaphroditic, protogynous, self-compatible and extremely long lived (up to 20 38 days; Vesprini & Pacini 2000). Helleborus foetidus is mainly pollinated by bumblebees, 39 which forage for the abundant, sucrose-rich nectar this species offers (Vesprini *et al.* 1999). 40 The reproductive biology and ecology of *H. foetidus* have been thoroughly investigated (e.g. 41 Herrera et al. 2001; Rey et al. 2006 and references therein), but the lack of suitable molecular 42 markers have so far hampered crucial studies on genetic diversity and gene flow. The 43 microsatellite markers presented here will allow us to conduct specific research on how biotic 44 factors, such as the presence of nectar yeasts in floral nectar (see Herrera et al. 2008; Herrera 45 & Pozo 2010; Herrera *et al.* in press) may affect pollen dispersal strategies, mating pattern 46 and seed progeny quality in this species.

48	For isolation of microsatellite loci, a high-throughput method coupling microsatellite
49	DNA enrichment and 454 GS-FLX Titanium next-generation sequencing was carried out by
50	Genoscreen (Lille, France) as described by Malausa et al. (2011), with modifications
51	regarding oligonucleotide probes. Sequences of the oligonucleotide probes used were as
52	follows: TG, TC, AAC, AAG, AGG, ACG, ACAT, ACTC. The resulting sequences were
53	analysed according to the pipeline implemented in QDD (Méglecz et al. 2010), yielding
54	primer sequences for 1010 potential microsatellite loci. We then selected 60 primer pairs for
55	amplification trials based on primer design and suitability of expected fragment sizes for
56	multiplexing purposes.
57	Total genomic DNA was extracted with Qiacube using DNeasy Plant Mini Kit
58	(Qiagen) following manufacturer's protocol, from 20-25 mg sample of dried leaf material
59	ground to fine powder in a Retsch MM 200 mill. Concentration and quality of DNA extracts
60	were estimated through spectrophotometry using Nanodrop (Thermo Scientific). For initial
61	simplex amplification tests we used 15 H. foetidus individuals collected from six natural
62	populations located in our study area in Sierra de Cazorla (Jaén province, southeastern Spain):
63	Coto del Valle, Castellón de los Cierzos, Rastrillos de la Víbora, Fuente Bermejo, La Cabrilla
64	and Roblehondo. Fluorescent labelling of PCR products in simplex PCR was done by
65	attaching a 'M13-tail'(5'-CAGTCGGGCGTCATCA- 3') to the 5' end of the forward primers,
66	following the method described by Schuelke (2000). Simplex PCR reactions were performed
67	in 20 μL volume containing 1× BSA (New England Biolabs), 1× reaction buffer, 3.5 mM
68	MgCl ₂ , 0.5 U Taq DNA polymerase (Bioline), 0.25 mM dNTP (Sigma-Aldrich), 0.3 µM of
69	each 'M13-tailed' forward primer, reverse primer and universal 'M13' primer tagged to the 5'
70	end with one of FAM, VIC, NED or PET (Applied Biosystems), and c.45 ng of DNA extract

71	as template. Simplex PCR conditions consisted of 95°C for 3 min, 19 cycles of 95°C for 1
72	min, 58°C for 30 sec of annealing with temperature decreasing 0.5°C every cycle, 72°C for 30
73	sec, followed by 19 cycles of 95°C for 1 min, 48°C for 30 sec and 72°C for 30 sec. A final
74	extension step consisted in 72°C for 10 min.
75	Primer pairs providing polymorphic, consistently scorable allele peaks obtained with
76	simplex PCR conditions were further tested in 60 individuals from 3 populations of the same
77	region (N = 20 individuals per population), distances between sites ranging from 5 to 11 km:
78	Tejerina (TEJ; 37.98° N, 2.91° W, 740 m.a.s.l.), Las Navillas (NAV; 37.94° N, 2.91° W, 1235
79	m.a.s.l.) and Puerto Llano (PLL; 37.81° N, 2.96° W, 1810 m.a.s.l.). Primers were
80	fluorescently labelled and conditions optimized to perform multiplex PCR including most of
81	the selected primers. Multiplex PCR profiles were optimized to combine 5 polymorphic
82	microsatellite markers each in a single 20 μL reaction containing 1× reaction buffer, 3.5 mM
83	MgCl ₂ , 0.25 mM dNTP, 2 U Taq DNA polymerase, 0.2 μ M of 5'-labeled primer with one of
84	FAM, VIC, NED or PET tags, 0.2 μ M unlabelled primer and c.120 ng of DNA extract as
85	template. Conditions for multiplex PCR were: 95°C for 3 min, 38 cycles of 95°C for 30 sec,
86	58°C for 30 sec, 72°C for 1 min and a final extension of 72°C for 3 min. Three additional
87	primer pairs were optimized with simplex PCR reactions as described above (see Table 1).
88	All PCR reactions were performed in a C100 Thermal Cycler (Biorad).
89	Diluted PCR products were separated and sized according to 500 LIZ size standard in
90	an ABI PRISM 3130xl sequencer (Applied Biosystems). Allele patterns based on peak
91	fluorescent intensity and morphology were visually analysed using GENEMAPPER v4.0
92	(Applied Biosystems). Total number of alleles, observed and expected heterozygosity and
93	private alleles (i.e. alleles detected in one population only) were computed with GENALEX 6
94	(Peakall & Smouse 2006). Frequency of null alleles was estimated with INEST 1.1 (Chybicki

95	& Burczyk 2009; Campagne et al. 2012). Deviation from Hardy-Weinberg equilibrium,
96	linkage disequilibrium between pairs of loci and fixation index (F_{IS} ; Weir & Cockerham
97	1984) were calculated with GENEPOP v4 (Rousset 2008).
98	
99	Twenty-six out of the 60 tested loci produced clear amplification products. Thirteen
100	loci exhibited polymorphism (Hefo1-Hefo13) and enabled resolution of 60 individual
101	genotypes, whereas other 13 loci appeared to be monomorphic (Hefo14-Hefo26). GenBank
102	accession numbers, primer sequences, repeat motifs and PCR profiles for polymorphic loci
103	are listed in Table 1. The remaining 34 primer pairs produced unspecific peaks or failed to
104	amplify and therefore were dismissed.
105	Among polymorphic loci, the number of alleles per locus ranged from two to eight
106	(mean = 3.92) with a total of 51 alleles in the 60 genotyped individuals. The number of
107	private alleles in each population was two for TEJ, three for NAV and three for PLL.
108	Chybicki-Burczyk likelihood-based method after 10000 iterations indicated high null allele
109	frequency only at locus Hefo12 in all populations (Table 2). All loci were at Hardy-Weinberg
110	equilibrium except Hefo12, which showed a significant excess of homozygotes, due to the
111	presence of null alleles. None of the loci pairs demonstrated linkage disequilibrium after
112	Bonferroni correction for multiple comparisons. Population mean F_{IS} values were 0.044 for
113	TEJ, 0.035 for NAV and 0.032 for PLL.
114	In conclusion, the microsatellite loci described here will be of great value for further
115	studies on mating system, as well as assessing patterns of gene flow and levels of genetic
116	diversity in natural populations of <i>H. foetidus</i> , and specifically, in the study of the interactions
117	of nectar-living microbes affecting pollen dispersal and seed progeny quality in this species.

119	Data accessibility
120	GenBank accession numbers for <i>H. foetidus</i> microsatellite loci: JX905360 to JX905372
121	(polymorphic loci) and JX905373 to JX905385 (monomorphic loci).
122	
123	Acknowledgements
124	We thank Rafael G. Albaladejo for helpful advice. This work was supported by the Spanish
125	Ministerio de Economía y Competitividad through grants CGL2010-15964 to CMH, FPI
126	program predoctoral grant BES-2011-046472 to MMS, and Juan de la Cierva Program to
127	CdV.
128	
129	Contributors
130	MMS and CdV carried out genetic analyses and were responsible for the writing and edition
131	of the manuscript. PB conducted most laboratory work. MM collected field samples used in
132	the present study and conducted some analyses, and CMH designed and supervised the study.
133	
134	References
135	Brownstein MJ, Carpten JD, Smith JR (1996) Modulation of non-templated nucleotide
136	addition by Taq DNA polymerase: primer modifications that facilitate genotyping.
137	<i>BioTechniques</i> 20 , 1004–1010.
138	Campagne P, Smouse PE, Varouchas G, Silvain JF, Leru B (2012) Comparing the van
139	Oosterhout and Chybicki-Burczyk methods of estimating null allele frequencies for
140	inbred populations. Molecular Ecology Resources 12, 975-982.
141	Chybicki IJ, Burczyk J (2009) Simultaneous estimation of null alleles and inbreeding
142	coefficients. Journal of Heredity 100, 106-113.

143	Dhooghe E, Grunewald W, Leus L, Van Labeke M-C (2009) In vitro polyploidisation of
144	Helleborus species. Euphytica 165, 89-95.
145	Herrera CM, Pozo MI (2010) Nectar yeasts warm the flowers of a winter-blooming plant.
146	Proceedings of the Royal Society B-Biological Sciences 277, 1827-1834.
147	Herrera CM, García IM, Pérez R (2008) Invisible floral larcenies: microbial communities
148	degrade floral nectar of bumble bee-pollinated plants. <i>Ecology</i> 89 , 2369-2376.
149	Herrera CM, Pozo MI, Medrano M (in press) Yeast in nectar of an early-blooming herb:
150	sought by bumble bees, detrimental to plant fecundity. Ecology (doi: 10.1890/12-
151	0595.1)
152	Herrera CM, Sánchez-Lafuente AM, Medrano M, Guitián J, Cerdá X, Rey P (2001)
153	Geographical variation in autonomous self-pollination levels unrelated to pollinator
154	service in Helleborus foetidus (Ranunculaceae). American Journal of Botany 88,
155	1025-1032.
156	Malausa T, Gilles A, Meglécz E et al. (2011) High-throughput microsatellite isolation
157	through 454 GS-FLX Titanium pyrosequencing of enriched DNA libraries. Molecular
158	Ecology Resources 11, 638-644.
159	Méglecz E, Costedoat C, Dubut V, Gilles A, Malausa T, Pech N, Martin JF (2010) QDD: a
160	user-friendly program to select microsatellite markers and design primers from large
161	sequencing projects. Bioinformatics 26, 403-404.
162	Peakall R, Smouse P (2006) Genalex 6: Genetic analysis in Excel. Population genetic
163	software for teaching and research. Molecular Ecology Notes 6, 288-295.
164	Rey PJ, Herrera CM, Guitián J, Cerdá X, Sánchez-Lafuente AM, Medrano M, Garrido JL
165	(2006) The geographic mosaic in predispersal interactions and selection on Helleborus
166	foetidus (Ranunculaceae). Journal of Evolutionary Biology 19, 21-34.

	167	Rousset F (2008)	GENEPOP'007: a	a complete re-im	plementation of the	e GENEPOP softwa
--	-----	------------------	----------------	------------------	---------------------	------------------

- 168 for Windows and Linux. *Molecular Ecology Resources* **8**, 103-106.
- 169 Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments.
- 170 *Nature Biotechnology* **18**, 233-234.
- 171 Vesprini JL, Pacini E (2000) Breeding systems in two species of the genus Helleborus
- 172 (Ranunculaceae). *Plant Biosystems* **134**, 193-197.
- 173 Vesprini JL, Nepi M, Pacini E (1999) Nectary structure, nectar secretion patterns and nectar
 174 composition in two *Helleborus* species. *Plant Biology* 1, 560-568.
- 175 Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population
- 176 structure. *Evolution* **38**, 1358-1370.
- 177 Werner K, Ebel F (1994) Zur Lebensgeschichte der Gattung Helleborus L.(Ranunculaceae).
- 178 *Flora* **189**, 97-130.

Table 1. Characteristics of polymorphic loci developed for *Helleborus foetidus*. F= forward primer, R= reverse primer,

M1=Multiplex set 1, M2=Multiplex set 2, S=Simplex and N_A= total number of alleles in the whole sample of 60 individuals from 3

populations (see Table 2). A 'PIGtail' (5'-GTTT-3') was added to the 5' end of reverse primers to facilitate the addition of adenosine by *Taq* polymerase (Brownstein *et al.* 1996).

Locus name	Accession number	Primer sequence (5'-3')	Repeat motif	Dye	PCR Profile	Size range (bp)	N _A
Hefol	JX905360	F: TTTGGAAATTTTAAAGGTTCTTGC	(TCT) ₇	FAM	M1	197-203	3
		R: CCAACCACATAATCATATCATAAGC					
Hefo2	JX905361	F: AGCACTGAGTTTCTAAAAGGGC	(GA) ₇	VIC	M1	95-97	2
		R: TTTCTCTTCAATCAAGAATAAACCA					
Hefo3	JX905362	F: AACATGCAAGACCGAACAACT	$(GA)_{12}$	PET	M2	101-117	8
		R: CCGGCGAAACTTTACCTGT					
Hefo4	JX905363	F: CTTCTTAAGTTTTATCAGAAACTTTGC	$(TCT)_8$	FAM	M1	247-265	7
		R: AGTATCTAGGTGGATAACGCTTGA					
Hefo5	JX905364	F: AACCACTCTATACGCTCCTCCA	$(CT)_7$	FAM	S	173-177	3
		R: TTGAGATAGTAGCACCTATTATTGAGA					
Hefo6	JX905365	F: ACTCACCAGTTTGGTTTTGCT	$(GTT)_5$	FAM	M1	164-167	2
		R: TGCATACTCAATCCCATCCA					
Hefo7	JX905366	F: CTTAACTGTACACCCTTAATGCATATC	$(CA)_8$	FAM	S	153-155	2
		R: CAAGATACTCAAGCATGGGC					
Hefo8	JX905367	F: GGAAGTACTCGAGGAAATTAACGA	(GA) ₉	NED	M2	202-218	3
		R: CCCAACTTATGATCTGCCAAA					
Hefo9	JX905368	F: AACCATCCATTCACACCATTT	(CT) ₇	NED	M2	266-268	2
		R: TTTGTATTTGGCATTTCATGG					
Hefo10	JX905369	F: AGCTTGCACAATGCTCTTCA	$(GA)_{10}$	VIC	M1	174-178	3

		R: CGATGCAAGTTGGTTCTTTTC					
Hefo11	JX905370	F: AGGTTCTAACCAAACCAATAAGG	$(TC)_8$	FAM	S	265-269	3
		R: GGATTGATATGACTTCATCACTGG					
Hefo12	JX905371	F: AGGGTAACGAAGGATATGACAGC	(CT) ₁₀	PET	M2	185-193	5
		R: TGGGTGTTAAGAAGGTAATAAGATG					
Hefo13	JX905372	F: AATAGGCCACCAGGGTTGAT	(AG) ₈	NED	M2	162-176	8
_		R: TCTTGATAGGCCTCATTATTTGT					

Molecular Ecology Resources

Table 2. Population genetics statistics based on the 13 polymorphic microsatellite loci in three *Helleborus foetidus* populations (TEJ, NAV, and PLL, N = 20 individuals) located at Sierra de Cazorla (southeastern Spain). N_A=Total number of alleles, H_O =observed heterozygosity, H_E =expected heterozygosity, F_{IS} =Weir and Cockerham's (1984) fixation index, HWE=significant deviation from Hardy-Weinberg equilibrium,

	TEJ						NAV					PLL						
Locus	N _A	H_O	H_E	F_{IS}	HWE^1	r	N _A	H_O	H_E	F_{IS}	HWE^1	r	N _A	H_O	H_E	F_{IS}	HWE ¹	r
Hefo l	3	0.400	0.483	0.176		0.093	3	0.450	0.504	0.109		0.074	2	0.450	0.450	-0.000		0.077
Hefo2	2	0.250	0.224	-0.118		0.079	2	0.350	0.409	0.147		0.098	2	0.100	0.097	-0.027		0.104
Hefo3	5	0.800	0.773	-0.036		0.042	4	0.650	0.682	0.048		0.060	6	0.500	0.587	0.152		0.075
Hefo4	7	0.750	0.681	-0.105		0.038	6	0.550	0.690	0.207		0.080	5	0.400	0.574	0.309		0.110
Hefo5	2	0.400	0.328	-0.226		0.060	3	0.550	0.476	-0.161		0.048	2	0.350	0.409	0.147		0.098
Hefo6	2	0.500	0.385	-0.310		0.052	2	0.850	0.512	-0.691		0.030	2	0.400	0.328	-0.226		0.061
Hefo7	2	0.300	0.262	-0.152		0.071	2	0.050	0.050	n.a.		0.109	2	0.100	0.097	-0.027		0.104
Hefo8	2	0.400	0.431	0.073		0.086	3	0.350	0.465	0.253		0.106	2	0.200	0.185	-0.086		0.084
Hefo9	2	0.350	0.481	0.277		0.115	2	0.650	0.512	-0.280		0.048	2	0.600	0.508	-0.188		0.055
Hefo10	3	0.400	0.396	-0.010		0.075	3	0.200	0.344	0.424		0.142	2	0.100	0.097	-0.027		0.098
Hefo11	2	0.050	0.050	n.a. ²		0.112	3	0.550	0.528	-0.042		0.062	3	0.400	0.347	-0.156		0.061
Hefo12	5	0.105	0.724	0.858	***	0.356	4	0.313	0.615	0.500	*	0.171	4	0.400	0.671	0.410	*	0.155
Hefo13	5	0.500	0.555	0.102		0.070	6	0.700	0.641	-0.095		0.038	6	0.650	0.747	0.133		0.063
Average	3.23	0.400	0.444	0.044			3.31	0.478	0.494	0.035			3.08	0.358	0.392	0.032		
S.D.	1.69	0.214	0.207	0.306			1.38	0.221	0.168	0.323			1.61	0.184	0.224	0.190		

r = null allele frequency estimated by Chybicki-Burczyk method and S.D.=standard deviation.

¹* (p < 0.05) and *** (p < 0.001). Empty cells indicate no deviation from HWE.

 2 n.a. = not available.